David Sykes, CR Hypersurfaces, Studying 2-nondegenerate Structures via Absolute Parallelisms

B236-1 IBS, Korea, Republic of

    Speaker David Sykes IBS CCG The basic problem of finding (local) biholomorphisms mapping one real hypersurface in a complex space onto another is only well understood for a limited class of hypersurfaces, and has a fundamental relationship to their induced CR geometries. Following a light historical survey of major results in the area,

Naoto Yotsutani, Bott Manifolds with the Strong Calabi Dream Structure

B236-1 IBS, Korea, Republic of

    Speaker Naoto Yotsutani Kagawa university We prove that if the Futaki invariant of a polarized Bott manifold (X, L) for any ample line bundle L vanishes, then X is isomorphic to the products of the projective lines. This talk is based on a work joint with Kento Fujita (algebro-geometrical approach), and another independent

Giancarlo Urzua, The Birational Geometry of Markov Numbers

B236-1 IBS, Korea, Republic of

    Speaker Giancarlo Urzua Pontificia Universidad Catolica de Chile The projective plane is rigid. However, it may degenerate to surfaces with quotient singularities. After the work of Bădescu and Manetti, Hacking and Prokhorov 2010 classified these degenerations completely. They are Q-Gorenstein partial smoothings of P(a2, b2, c2), where a, b, c satisfy the Markov

Izzet Coskun, The Geometry of Moduli Spaces of Sheaves on P2

B236-1 IBS, Korea, Republic of

    Speaker Izzet Coskun University of Illinois Chicago In this talk, I will explain how to use Bridgeland stability conditions to compute the ample and effective cones of moduli spaces of sheaves on the projective plane. I will describe the birational geometry of these moduli spaces and give applications to the higher rank interpolation

Izzet Coskun, The Higher Rank Brill-Noether Problem on Surfaces

B236-1 IBS, Korea, Republic of

    Speaker Izzet Coskun University of Illinois Chicago In this talk, I will explain how to use Bridgeland stability conditions to compute the cohomology of a general stable sheaf on a K3 or abelian surface. This talk is based on joint work with Howard Nuer and Kota Yoshioka.

Luca Schaffler, An Explicit Wall Crossing for the Moduli Space of Hyperplane Arrangements

B236-1 IBS, Korea, Republic of

    Speaker Luca Schaffler Roma Tre University The moduli space of hyperplanes in projective space has a family of geometric and modular compactifications that parametrize stable hyperplane arrangements with respect to a weight vector. Among these, there is a toric compactification that generalizes the Losev-Manin moduli space of points on the line. We study

Yen-An Chen, Toric Fano Foliations

B236-1 IBS, Korea, Republic of

    Speaker Yen-An Chen National Taiwan University In recent years, there are significant developments of the minimal model program for foliated varieties. It is intriguing to ask if Fano foliations form a bounded family. It is anticipated that Borisov-Alexeev-Borisov conjecture also holds in the context of foliations. In this talk, I will discuss the

Luca Schaffler, Unimodal Singularities and Boundary Divisors in the KSBA Moduli of a Class of Horikawa Surfaces

B236-1 IBS, Korea, Republic of

    Speaker Luca Schaffler Roma Tre University Smooth minimal surfaces of general type with K2=1, pg=2, and q=0 constitute a fundamental example in the geography of algebraic surfaces, and the 28-dimensional moduli space M of their canonical models admits a modular compactification M via the minimal model program. We describe eight new irreducible boundary

Sungmin Yoo, Convergence of Sequences of the Bergman Type Volume Forms

B236-1 IBS, Korea, Republic of

    Speaker Sungmin Yoo Incheon National University Following the Yau-Tian-Donaldson conjecture, the construction of sequences of Bergman-type metrics converging to a canonical metric on a polarized manifold has been studied by many mathematicians including Tian, Donaldson, Tsuji, Berman, Berndtsson, and others. In this talk, I will introduce my recent findings on the uniform convergence

Yonghwa Cho, Double Point Divisors from Projections

B236-1 IBS, Korea, Republic of

    Speaker Yonghwa Cho Gyeongsang National University Consider a smooth projective variety of codimension e. A general projection from a linear subspace of dimension (e-2) is birational, hence the non-isomorphic locus forms a proper closed subset of X. Mumford showed that this non-isomorphic locus is not merely a closed subset, but is naturally endowed

IBS 복소기하학연구단 Center for Complex Geometry
기초과학연구원 복소기하학연구단
대전 유성구 엑스포로 55 (우) 34126
IBS Center for Complex Geometry
Institute for Basic Science (IBS)
55 Expo-ro Yuseong-gu Daejeon 34126 South Korea
Copyright © IBS 2020. All rights reserved.