Rostislav Devyatov, Multiplicity-free Products of Schubert Divisors and an Application to Canonical Dimension

B266 IBS, Korea, Republic of

     Speaker Rostislav Devyatov KAIST In the first part of my talk I am going to speak about Schubert calculus. Let G/B be a flag variety, where G is a linear simple algebraic group, and B is a Borel subgroup. Schubert calculus studies (in classical terms) multiplication in the cohomology ring of a flag

Jongbaek Song, Regular Hessenberg Varieties and Toric Varieties

TBA

     Speaker Jongbaek Song KIAS A Hessenberg variety is a subvariety of the flag variety (G/B) determined by two parameters: one is an element of the Lie algebra of G and the other is a B-submodule containing the Lie algebra of B, known as a Hessenberg space. In this talk, we focus on elements

Sandor Kovacs, Hodge Sheaves for Singular Families

on-line

     Speaker Sandor Kovacs Univ. of Washington This is a report on joint work with Behrouz Taji. Given a flat projective morphism f : X → B of complex varieties, assuming that B is smooth, we construct a functorial system of reflexive Hodge sheaves on B . If in addition, X is also smooth then

Young-Hoon Kiem, A New Construction of the Moduli Space of Pointed Stable Curves of Genus 0

TBA

     Speaker Young-Hoon Kiem Seoul National University The moduli space of n points on a projective line up to projective equivalence has been a topic of research since the 19th century. A natural moduli theoretic compactification was constructed by Deligne and Mumford as an algebraic stack. Later, Knudsen, Keel, Kapranov and others provided explicit

Chenyang Xu, K-stability of Fano Varieties

on-line

     Speaker Chenyang Xu Princeton Univ. K-stability of Fano varieties was initiated as a central topic in complex geometry, for its relation with the Kähler-Einstein metric. It turns out that the machinery of higher dimensional geometry, developed around the minimal model program, provides a fundamental tool to study it, and therefore makes it an

Gunhee Cho, The Lower Bound of the Integrated Carathéodory-Reiffen Metric and Invariant Metrics on Complete Noncompact Kähler Manifolds

on-line

     Speaker Gunhee Cho UCSB We seek to gain progress on the following long-standing conjectures in hyperbolic complex geometry: prove that a simply connected complete Kähler manifold with negatively pinched sectional curvature is biholomorphic to a bounded domain and the Carathéodory-Reiffen metric does not vanish everywhere. As the next development of the important recent

Arithemetic Geometry Day in IBS-CCG

B266 IBS, Korea, Republic of

List of Seminars A Hyperelliptic Curve Mapping to Specified Elliptic Curves Bo-Hae Im (KAIST) 14:00-15:00, IBS B266 Jordan Constants of Simple Abelian Varieties over Fields of Positive Characteristic WonTae Hwang (Jeonbuk National Univ.) 15:15-16:15, IBS B266 Decidable Diophantine Problems on Character Varieties Junho Peter Whang (Seoul National Univ.) 16:30-17:30, IBS B266

Bo-Hae Im, A Hyperelliptic Curve Mapping to Specified Elliptic Curves

B266 IBS, Korea, Republic of

     Speaker Bo-Hae Im KAIST (This is a part of Arithemetic Geometry Day in IBS-CCG.) We are interested in the existence and non-existence of rational curves on certain Kummer varieties which can be applied to the rank problem of quadratic twists of elliptic curves. In this talk, we prove that if the j-invariants of

WonTae Hwang, Jordan Constants of Simple Abelian Varieties over Fields of Positive Characteristic

B266 IBS, Korea, Republic of

     Speaker WonTae Hwang Jeonbuk National Univ. (This is a part of Arithemetic Geometry Day in IBS-CCG.) We compute the Jordan constants of simple abelian surfaces over fields of positive characteristic, with the aid of a similar computation on the Jordan constants of some arithmetic objects. As an update, we also briefly record a

Junho Peter Whang, Decidable Diophantine Problems on Character Varieties

B266 IBS, Korea, Republic of

     Speaker Junho Peter Whang Seoul National Univ. (This is a part of Arithemetic Geometry Day in IBS-CCG.) Character varieties of manifolds are basic objects in geometry and low-dimensional topology. We motivate the Diophantine study of their integral points. After discussing an effective finite generation theorem for integral points on SL2-character varieties of surfaces,

Kang-Hyurk Lee, Smoothly Bounded Domain with a Compact Quotient

on-line

     Speaker Kang-Hyurk Lee GNU The Wong-Rosay theorem says that a smoothly bounded domain covering a compact complex manifold is biholomorphically equivalent to the unit ball. The general methodology of this theorem is the affine rescaling method. In this talk, I will introduce the potential rescaling method, an alternative of the affine rescaling. This

Jeong-Seop Kim, Positivity of Tangent Bundles of Fano Threefolds

TBA

     Speaker Jeong-Seop Kim KAIST As well as the Hartshorne-Frankel conjecture on the ampleness of tangent bundle, it has been asked to characterize a smooth projective variety X whose tangent bundle TX attains certain positivity, e.g., nefness, k-ampleness, or bigness. But for the ampleness, the complete answers are not known even within the class

IBS 복소기하학연구단 Center for Complex Geometry
기초과학연구원 복소기하학연구단
대전 유성구 엑스포로 55 (우) 34126
IBS Center for Complex Geometry
Institute for Basic Science (IBS)
55 Expo-ro Yuseong-gu Daejeon 34126 South Korea
Copyright © IBS 2020. All rights reserved.