Seminars on Algebraic Surfaces and Related Topics

B236-1 IBS, Korea, Republic of

     Schedule Feb. 27 N-resolutions Giancarlo Urzua (UC Chille) 13:30-14:20 Smooth Projective Surfaces with Pseudo-effective Tangent Bundles Guolei Zhong (IBS-CCG) 14:40-15:30 Nodal Surfaces and Cubic Discriminants Yonghwa Cho (IBS-CCG) 15:50-16:40 Lagrangian Fibration Structure on the Cotangent Bundle of a Del Pezzo Surface of Degree 4 Hosung Kim (IBS-CCG) 17:00-17:50 Dinner 18:20-20:00 Feb. 28 Deformations

Giancarlo Urzua, N-resolutions

B236-1 IBS, Korea, Republic of

     Speaker Giancarlo Urzua UC Chille (This is a part of Seminars on Algebraic Surfaces and Related Topics.) I will introduce N-resolutions, which are the negative analog of the Kollár--Shepherd-Barron (1988) P-resolutions of a 2-dimensional cyclic quotient singularity. (We instead work with the corresponding M-resolutions of Benkhe-Christophersen (1994).) I will start by describing an

Guolei Zhong, Smooth Projective Surfaces with Pseudo-effective Tangent Bundles

B236-1 IBS, Korea, Republic of

     Speaker Guolei Zhong IBS CCG (This is a part of Seminars on Algebraic Surfaces and Related Topics.) A vector bundle over a projective manifold is said to be pseudo-effective if the tautological line bundle of its Grothendieck projectivization is pseudo-effective. In this talk, I will show that a smooth non-uniruled projective surface S

Yonghwa Cho, Nodal Surfaces and Cubic Discriminants

B236-1 IBS, Korea, Republic of

     Speaker Yonghwa Cho IBS CCG (This is a part of Seminars on Algebraic Surfaces and Related Topics.) In this talk, I will explain how to associate a nodal surface in P3 with a cubic hypersurface, generalizing the method by Togliatti who constructed quintics with 31 nodes via a discriminant of a nodal cubic

Hosung Kim, Lagrangian Fibration Structure on the Cotangent Bundle of a Del Pezzo Surface of Degree 4

B236-1 IBS, Korea, Republic of

     Speaker Hosung Kim IBS CCG (This is a part of Seminars on Algebraic Surfaces and Related Topics.) The cotangent bundle of a complex projective manifold carries a natural holomorphic symplectic 2-form. The existence of a natural Lagrangian fibration structure of these non-compact complex manifolds has not been studied very much. In this talk,

Dongsoo Shin, Deformations of Sandwiched Surface Singularities and the Minimal Model Program

B236-1 IBS, Korea, Republic of

     Speaker Dongsoo Shin Chungnam National U. (This is a part of Seminars on Algebraic Surfaces and Related Topics.) We investigate the correspondence between three theories of deformations of rational surface singularities: de Jong and van Straten's picture deformations, Kollár's P-resolutions, and Pinkham's smoothings of negative weights. We provide an explicit method for obtaining,

JongHae Keum, Mori Dream Surfaces of General Type with pg=0

B236-1 IBS, Korea, Republic of

     Speaker JongHae Keum KIAS (This is a part of Seminars on Algebraic Surfaces and Related Topics.) The Cox ring of a variety is the total coordinate ring, i.e., the direct sum of all spaces of global sections of all divisors. When this ring is finitely generated, the variety is called Mori dream (MD).

Yunhyung Cho, Monotone Lagrangian Tori in Fano Varieties

B236-1 IBS, Korea, Republic of

     Speaker Yunhyung Cho Sungkyunkwan University This is a survey talk of current progress of mirror symmetry of Fano varieties. For a given smooth Fano variety X, it has been conjectured that there exists a Laurent polynomial called a (weak) Landau-Ginzburg mirror (or weak LG mirror shortly) which encodes a quantum cohomology ring structure

Donghoon Jang, Circle Actions on Almost Complex Manifolds with Isolated Fixed Points

B236-1 IBS, Korea, Republic of

     Speaker Donghoon Jang Pusan National University We briefly review group actions on manifolds and equivariant cohomology, which is cohomology of a manifold with a group action. We review classification results for circle actions on various types of manifolds in low dimensions. An almost complex manifold is a manifold with a complex structure on

Insong Choe, Subsheaves of Maximal Rank in a Symplectic and Orthogonal Bundle over a Curve

B236-1 IBS, Korea, Republic of

    Speaker Insong Choe Kunkuk University We first review the known results on the Quot schemes on a smooth algebraic curve. Next we explain how they can be generalized to the Lagrangian Quot scheme, which parametrizes Lagrangian subsheaves on a symplectic vector bundle. Also we discuss the parallel results for orthogonal bundles. This will

Donggun Lee, Birational Geometry of Generalized Hessenberg Varieties and the Generalized Shareshian-Wachs Conjecture

B236-1 IBS, Korea, Republic of

    Speaker Donggun Lee IBS-CCG Hessenberg varieties are subvarieties of flag varieties with interesting properties in both algebro-geometric and combinatorial perspectives. The Shareshian-Wachs conjecture connects their cohomology with the chromatic quasi-symmetric functions of the associated graphs, which are refinements of the chromatic polynomials. In this talk, we introduce generalized Hessenberg varieties and study their

IBS 복소기하학연구단 Center for Complex Geometry
기초과학연구원 복소기하학연구단
대전 유성구 엑스포로 55 (우) 34126
IBS Center for Complex Geometry
Institute for Basic Science (IBS)
55 Expo-ro Yuseong-gu Daejeon 34126 South Korea
Copyright © IBS 2020. All rights reserved.