Calendar of Events
|
Monday
|
Tuesday
|
Wednesday
|
Thursday
|
Friday
|
Saturday
|
Sunday
|
|---|---|---|---|---|---|---|
|
2 events,
Insong Choe (최인송) Visitor (2023.3.1-2024.2.28) from Konkuk University Office: B255 |
||||||
|
3 events,
-
Speaker Shinnosuke Okawa Osaka University Semiorthogonal decomposition (SOD) is a central notion in the study of triangulated categories. In particular, SODs of the bounded derived category of coherent sheaves of a variety (SODs of the variety, for short) have profound relations to its geometry. In this talk I discuss the moduli functor which … |
3 events,
-
Speaker Shinnosuke Okawa Osaka University Motivated by the DK hypothesis, some years ago I proved that SODs of the derived category of a smooth projective variety are strongly constrained by the base locus of the canonical linear system. In particular, this leads to the indecomposability of the derived category of varieties whose canonical … |
|||||
|
3 events,
-
Speaker Qifeng Li Shandong University To each complex composition algebra A, there associates a projective symmetric manifold X(A) of Picard number 1. The vareity X(A) is closed related with Freudenthal's Magic Square, which is a square starting from the adjiont varieties of F4, E6, E7 and E8. In a recent joint work with … |
||||||
|
3 events,
-
Speaker Chang-Yeon Chough Sogang Univ. This is an 8 hours long lecture series on algebraic stacks, which have become an important part of algebraic geometry (for example, in the study of moduli spaces) since Deligne and Mumford established the foundation of the theory of stacks. This crash course will be following roughly "Algebraic … |
3 events,
-
Speaker Chang-Yeon Chough Sogang Univ. This is an 8 hours long lecture series on algebraic stacks, which have become an important part of algebraic geometry (for example, in the study of moduli spaces) since Deligne and Mumford established the foundation of the theory of stacks. This crash course will be following roughly "Algebraic … |
3 events,
-
Speaker Patrick Brosnan University of Maryland I'll explain what I know about two very interesting pieces of work: (1) Markman's proof of the Hodge conjecture for Weil type abelian fourfolds of discriminant 1. (2) Kontsevich's tropical approach to looking for counterexamples to the Hodge conjecture for Weil type abelian varieties. Then I'll explain … |
||||
|
4 events,
-
Speaker Patrick Brosnan University of Maryland I'll explain what I know about two very interesting pieces of work: (1) Markman's proof of the Hodge conjecture for Weil type abelian fourfolds of discriminant 1. (2) Kontsevich's tropical approach to looking for counterexamples to the Hodge conjecture for Weil type abelian varieties. Then I'll explain …
-
Speaker Chang-Yeon Chough Sogang Univ. This is an 8 hours long lecture series on algebraic stacks, which have become an important part of algebraic geometry (for example, in the study of moduli spaces) since Deligne and Mumford established the foundation of the theory of stacks. This crash course will be following roughly "Algebraic … |
3 events,
-
Speaker Chang-Yeon Chough Sogang Univ. This is an 8 hours long lecture series on algebraic stacks, which have become an important part of algebraic geometry (for example, in the study of moduli spaces) since Deligne and Mumford established the foundation of the theory of stacks. This crash course will be following roughly "Algebraic … |
|||||
|
3 events,
-
Speaker Gunhee Cho UCSB By exploiting the upper semicontinuity of the Kobayashi-Eisenman pseudo volume (and pseudometric) under deformations of complex structures, we establish the non-measure hyperbolicity of K3 surfaces—which M. Green and P. Griffiths verified for certain cases in 1980—holds for all K3 surfaces. Our result provides a stronger condition than the Kobayashi … |

