Jihun Yum, Stochastic Bergman Geometry

B266 IBS, Korea, Republic of

    Speaker Jihun Yum IBS-CCG For a bounded domain Ω in Cn, let P(Ω) be the set of all (real) probability distributions on Ω. Then, in general, P(Ω) becomes an infinite-dimensional smooth manifold and it always admit a natural Riemannian pseudo-metric, called the Fisher information metric, on P(Ω). Information geometry studies a finite-dimensional submanifold

Junyan Zhao, Moduli of Curves of Genus 6 and K-stability

on-line

    Speaker Junyan Zhao University of Illinois Chicago A general curve C of genus 6 can be embedded into the unique quintic del Pezzo surface X5 as a divisor of class -2KX5. This embedding is unique up to the action of the symmetric group S5. Taking a double cover of X5 branched along C yields

Hoseob Seo, On L2 Extension from Singular Hypersurfaces

B266 IBS, Korea, Republic of

    Speaker Hoseob Seo IBS CCG In L2 extension theorems from a singular hypersurface in a complex manifold, important roles are played by certain measures such as the Ohsawa measure which determine when a given function can be extended. We show that the singularity of the Ohsawa measure can be identified in terms of

Workshop on Moduli, K-stability, Fano varieties, and related topics

IBS Science Culture Center Daejeon, Korea, Republic of

Speakers Arnaud Beauville (University of Nice) Fabrizio Catanese (University of Bayreuth) Thibaut Delcroix (University of Montpellier) Kento Fujita (Osaka University) Young-Hoon Kiem (KIAS) Shigeru Mukai (RIMS, Kyoto University) Yuri Prokhorov (Steklov Mathematical Institute) Constantin Shramov (Steklov Mathematical Institute) Abstracts PDF File Schedule Day 1: May 15 (Monday)   ~10:00 Registration 10:00~11:00 Shigeru Mukai Moduli of

Changho Han, Compact Moduli of K3 Surfaces with a Given Nonsymplectic Cyclic Action

B236-1 IBS, Korea, Republic of

    Speaker Changho Han University of Waterloo To construct a moduli space which is itself a compactification of a given moduli space, one needs to enlarge the class of objects in consideration (e.g. adding certain singular curves to the class of smooth curves). After a brief review of the compactifications of the moduli of

Sung Gi Park, Kodaira Dimension and Hyperbolicity for Smooth Families of Varieties

on-line

    Speaker Sung Gi Park Harvard University In this talk, I will discuss the behavior of positivity, hyperbolicity, and Kodaira dimension under smooth morphisms of complex quasi-projective manifolds. This includes a vast generalization of a classical result: a fibration from a projective surface of non-negative Kodaira dimension to a projective line has at least

Shin-Young Kim, Minimal Rational Curves on Complete Symmetric Varieties

B236-1 IBS, Korea, Republic of

    Speaker Shin-Young Kim IBS-CGP We describe the families of minimal rational curves on any complete symmetric variety, and the corresponding varieties of minimal rational tangents. In particular, we prove that these varieties are homogeneous and that for non-exceptional irreducible wonderful varieties, there is a unique family of minimal rational curves. We relate these

IBS 복소기하학연구단 Center for Complex Geometry
기초과학연구원 복소기하학연구단
대전 유성구 엑스포로 55 (우) 34126
IBS Center for Complex Geometry
Institute for Basic Science (IBS)
55 Expo-ro Yuseong-gu Daejeon 34126 South Korea
Copyright © IBS 2020. All rights reserved.