Jihun Yum, Isometric Embedding of Kähler Manifolds and the Diastatic Function
B266 IBS, Korea, Republic ofSpeaker Jihun Yum IBS, Center for Complex Geometry
Speaker Jihun Yum IBS, Center for Complex Geometry
Speaker Minseong Kwon KAIST This is a working seminar to introduce the notion of an integrable G-structure and its obstruction class. In the previous two talks, we discussed the definition of the k-th order structure tensor of a G-structure. In the third talk, we will discuss how the structure tensors can be characterized …
Speaker Sung Yeon Kim IBS, Center for Complex Geometry
Speaker Sangbum Yoo Gongju National University of Education Spectral data for Higgs bundles over a smooth curve has been studied by several mathematicians. The studies in this direction are originated by N.J.Hitchin. Specially, it has contributed to the studies on the fibers of the Hitchin map. In this talk, I will introduce spectral …
Speaker Seung-Jo Jung Jeonbuk National University Recently Mustata-Popa introduced a generalisation of multiplier ideals, which is called Hodge ideals. This talk introduces the Hodge ideals and explains the relations with other invariants, e.g. Bernstein-Sato polynomials, Hodge spectra, log canonical thresholds, minimal exponents etc. Mainly this talk concerns the relation between Hodge ideals and …
Speaker Hyungryul Baik KAIST For a tower of finite normal covers of graphs or surfaces, one can consider a sequence of metrics on the base given by pull-back of canonical metric of the covers. We show that such a sequence has a limit and it depends only on the cover approximated by the …
Speaker Sungmin Yoo IBS, Center for Complex Geometry A study on the positive variation of Kähler-Einstein metrics is first developed by Schumacher. More precisely, he has proved that the fiberwise Kähler-Einstein metrics on a family of canonically polarized compact Kähler manifolds is positive-definite on the total space. Later, Berman constructed the fiberwise Kähler-Ricci …
Speaker Jihun Yum IBS, Center for Complex Geometry Let Ω be a bounded pseudoconvex domain in Cn with smooth boundary ∂Ω. The Diederich-Fornaess index and the Steinness index of Ω are defined by DF(Ω) := supρ { 0 < η < 1 : -(-ρ)η is strictly plurisubharmonic on Ω ∩ U for some …
Speaker Sungmin Yoo IBS, Center for Complex Geometry After Yau suggested the problem of approximations of Kähler-Einstein metrics by Bergman type metrics, various types of Bergman metrics have been developed and studied by Tian, Donaldson, Tsuji, etc. They showed that if a polarized manifold admits a Kähler-Einstein metric, there exist a sequence of …
Speaker Qifeng Li IBS, Center for Complex Geometry For a complex connected semisimple linear algebraic group G of adjoint type and of rank n, De Concini and Procesi constructed its wonderful compactification X, which is a smooth Fano variety of Picard number n enjoying many interesting properties. In this talk, we will show …
Speaker Jihun Yum IBS, Center for Complex Geometry Let Ω be a relatively compact pseudoconvex domain in a complex manifold X with smooth boundary ∂Ω. The Diederich-Fornaess index and the Steinness index of Ω are defined by DF(Ω) := supρ { 0 < η < 1 : -(-ρ)η is strictly plurisubharmonic on Ω …
Speaker Seungjae Lee IBS, Center for Complex Geometry Let Γ be a cocompact torsion-free lattice in the automorphism group of complex unit ball Bn, Aut(Bn). In this talk, we discuss the existence of symmetric differentials on the compact ball quotient Σ = Bn / Γ. Since Σ has a Kähler metric induced by …