Joaquín Moraga, Coregularity of Fano Varieties

on-line

     Speaker Joaquín Moraga UCLA In this talk, we will introduce the absolute coregularity of Fano varieties. The coregularity measures the singularities of the anti-pluricanonical sections. Philosophically, most Fano varieties have coregularity 0. In the talk, we will explain some theorems that support this philosophy. We will show that a Fano variety of coregularity

Andrea Petracci, A 1-dimensional Component of K-moduli of Del Pezzo Surfaces

on-line

     Speaker Andrea Petracci Università di Bologna Fano varieties are algebraic varieties with positive curvature; they are basic building blocks of algebraic varieties. Great progress has been recently made by Xu et al. to construct moduli spaces of Fano varieties by using K-stability (which is related to the existence of Kähler-Einstein metrics). These moduli

JongHae Keum, Fake Projective Planes I

B236-1 IBS, Korea, Republic of

     Speaker JongHae Keum KIAS Fake projective planes (abbreviated as FPPs) are 2-dimensional complex manifolds with the same Betti numbers as the projective plane, but not isomorphic to it. FPPs can be uniformized by a complex 2-ball. In other words, they are ball quotients having the minimum possible Betti numbers. The existence of such

JongHae Keum, Fake Projective Plane II

B236-1 IBS, Korea, Republic of

     Speaker JongHae Keum KIAS Fake projective planes (abbreviated as FPPs) are 2-dimensional complex manifolds with the same Betti numbers as the projective plane, but not isomorphic to it. FPPs can be uniformized by a complex 2-ball. In other words, they are ball quotients having the minimum possible Betti numbers. The existence of such

Kangjin Han, Secant variety and its singularity I

B266 IBS, Korea, Republic of

     Speaker Kangjin Han DGIST Secant variety (or more generally Join) construction is one of the main methods to construct a new geometric object from the original one in classical algebraic geometry. In this series of talks, we first consider some general facts on secant varieties and then focus on a specific topic, i.e.

Kangjin Han, Secant variety and its singularity II

B266 IBS, Korea, Republic of

     Speaker Kangjin Han DGIST Secant variety (or more generally Join) construction is one of the main methods to construct a new geometric object from the original one in classical algebraic geometry. In this series of talks, we first consider some general facts on secant varieties and then focus on a specific topic, i.e.

Dennis The, A Cartan-theoretic Perspective on (2,3,5)-distributions

B236-1 IBS, Korea, Republic of

     Speaker Dennis The UiT The Arctic University of Norway Generic rank 2 distributions on 5-manifolds, i.e. "(2,3,5)-distributions", are interesting geometric structures arising in the study of non-holonomic systems, underdetermined ODE of Monge type, conformal 5-manifolds with special holonomy, etc. The origins of their study date to Élie Cartan's "5-variables" paper of 1910, where

IBS 복소기하학연구단 Center for Complex Geometry
기초과학연구원 복소기하학연구단
대전 유성구 엑스포로 55 (우) 34126
IBS Center for Complex Geometry
Institute for Basic Science (IBS)
55 Expo-ro Yuseong-gu Daejeon 34126 South Korea
Copyright © IBS 2020. All rights reserved.