Shinnosuke Okawa, Moduli Space of Semiorthogonal Decompositions

B236-1 IBS, Korea, Republic of

    Speaker Shinnosuke Okawa Osaka University Semiorthogonal decomposition (SOD) is a central notion in the study of triangulated categories. In particular, SODs of the bounded derived category of coherent sheaves of a variety (SODs of the variety, for short) have profound relations to its geometry. In this talk I discuss the moduli functor which

Shinnosuke Okawa, Semiorthogonal Decompositions and Relative Canonical Base Locus

B236-1 IBS, Korea, Republic of

    Speaker Shinnosuke Okawa Osaka University Motivated by the DK hypothesis, some years ago I proved that SODs of the derived category of a smooth projective variety are strongly constrained by the base locus of the canonical linear system. In particular, this leads to the indecomposability of the derived category of varieties whose canonical

IBS 복소기하학연구단 Center for Complex Geometry
기초과학연구원 복소기하학연구단
대전 유성구 엑스포로 55 (우) 34126
IBS Center for Complex Geometry
Institute for Basic Science (IBS)
55 Expo-ro Yuseong-gu Daejeon 34126 South Korea
Copyright © IBS 2020. All rights reserved.